Spaces of surface group representations
نویسنده
چکیده
Let Γg denote the fundamental group of a closed surface of genus g ≥ 2. We show that every geometric representation of Γg into the group of orientation-preserving homeomorphisms of the circle is rigid, meaning that its deformations form a single semi-conjugacy class. As a consequence, we give a new lower bound on the number of topological components of the space of representations of Γg into Homeo+(S). Precisely, for each nontrivial divisor k of 2g− 2, there are at least k2g + 1 components containing representations with Euler number 2g−2 k . Our methods apply to representations of surface groups into finite covers of PSL(2, R) and into Diff+(S) as well, in which case we recover theorems of W. Goldman and J. Bowden. The key technique is an investigation of stability phenomena for rotation numbers of products of circle homeomorphisms using techniques of Calegari–Walker. This is a new approach to studying deformation classes of group actions on the circle, and may be of independent interest.
منابع مشابه
The Representations and Positive Type Functions of Some Homogenous Spaces
‎For a homogeneous spaces ‎$‎G/H‎$‎, we show that the convolution on $L^1(G/H)$ is the same as convolution on $L^1(K)$, where $G$ is semidirect product of a closed subgroup $H$ and a normal subgroup $K $ of ‎$‎G‎$‎. ‎Also we prove that there exists a one to one correspondence between nondegenerat $ast$-representations of $L^1(G/H)$ and representations of ...
متن کاملMaximal Surface Group Representations in Isometry Groups of Classical Hermitian Symmetric Spaces
Higgs bundles and non-abelian Hodge theory provide holomorphic methods with which to study the moduli spaces of surface group representations in a reductive Lie group G. In this paper we survey the case in which G is the isometry group of a classical Hermitian symmetric space of non-compact type. Using Morse theory on the moduli spaces of Higgs bundles, we compute the number of connected compon...
متن کاملTwo-wavelet constants for square integrable representations of G/H
In this paper we introduce two-wavelet constants for square integrable representations of homogeneous spaces. We establish the orthogonality relations fo...
متن کاملar X iv : m at h / 03 11 14 9 v 4 [ m at h . A G ] 2 9 A pr 2 00 6 MODULI SPACES OF LOCAL SYSTEMS AND HIGHER TEICHMÜLLER THEORY
LetG be a split semisimple algebraic group over Qwith trivial center. Let S be a compact oriented surface, with or without boundary. We define positive representations of the fundamental group of S to G(R), construct explicitly all positive representations, and prove that they are faithful, discrete, and positive hyperbolic; the moduli space of positive representations is a topologically trivia...
متن کاملConnected Components of Spaces of Surface Group Representations Ii Nan-kuo Ho and Chiu-chu
In [HL1], we discussed the connected components of the space of surface group representations for any compact connected semisimple Lie group and any closed compact (orientable or nonorientable) surface. In this sequel, we generalize the results in [HL1] in two directions: we consider general compact connected Lie groups, and we consider all compact surfaces, including the ones with boundaries. ...
متن کاملMapping Class Group Dynamics on Surface Group Representations
Deformation spaces Hom(π,G)/G of representations of the fundamental group π of a surface Σ in a Lie group G admit natural actions of the mapping class group ModΣ, preserving a Poisson structure. When G is compact, the actions are ergodic. In contrast if G is noncompact semisimple, the associated deformation space contains open subsets containing the Fricke-Teichmüller space upon which ModΣ acts...
متن کامل